

AFRL-IF-RS-TR-2003-269

Final Technical Report
November 2003

JOINT BATTLESPACE INFOSPHERE
REPOSITORY PROTOTYPE

Northrop Grumman Information Technology

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory,
Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the National
Technical Information Service (NTIS). At NTIS it will be releasable to the general
public, including foreign nations.

 AFRL-IF-RS-TR-2003-269 has been reviewed and is approved for
publication

APPROVED: /s/

PATRICK K. MCCABE
Project Engineer

 FOR THE DIRECTOR: /s/

 JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
NOVEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final Mar 02 – Aug 03

4. TITLE AND SUBTITLE
JOINT BATTLESPACE INFOSPHERE REPOSITORY PROTOTYPE

6. AUTHOR(S)
Patrick K. McCabe, Douglas J. Barnum, and Robert Gann

5. FUNDING NUMBERS
C - F30602-00-D-0159/TASK 8
PE - 62702F
PR - JBIT
TA - PR
WU - 08

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northrop Grumman Information Technology
Defense Mission Systems
12005 Sunrise Valley Drive
Reston Virginia 20191-3404

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFEA
26 Electronic Parkway
Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-269

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Patrick K. McCabe/IFEA/(315) 330-3197/ Patrick.McCabe@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The purpose of this task was to design and develop a prototype capability that provides repository services for a Joint
Battlespace Infosphere (JBI) Repository Prototype. Repository services include storage and retrieval of Information
Objects as well as all data required for JBI operation, maintenance, and management. The objective in building the
prototype was to obtain an understanding of the requirements for a robust JBI repository, and to examine in a laboratory
setting, how those requirements could be satisfied.

The approach was to leverage in-house research and development for repository design and core service definition as
points of departure for a far term design. Several repository software packages were evaluated to aid in the definition of
the design space for the JBI repository prototype.

15. NUMBER OF PAGES
30

14. SUBJECT TERMS
Joint Battlespace Infosphere, Repository, Core Services, Publish, Subscribe, Query,
Control 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Introduction... 1
Repository Overview .. 2

Information Object Repository Interface and Driver API .. 4
Berkeley DB XML.. 6
Xindice.. 8
eXist .. 9
Using OASIS 1.0 .. 12

Persisting Information Object instances via EJB Deployment ... 13
Information Object Repository OASIS EJB... 13
Metadata Repository OASIS EJB... 14

XPath Parser Grammar and JavaCC... 16
Castor .. 17
The RIB... 18

Approach... 20
Interoperability.. 20
Initial Dataset .. 21
Making the RIB Operational... 21

Current Repository Design ... 21
Conclusion .. 24

 i

Table of Figures

Figure 1 - JBI Repository Role ... 2
Figure 2 - Relationship of Application and Repository Interfaces ... 3
Figure 3 – eXist Architecture.. 10
Figure 4 – eXist Start Page ... 11
Figure 5 – OASIS High Level Architecture ... 14
Figure 6 – OASIS 1.0 EJB Overview ... 16
Figure 7 – Basic Interoperability Model... 19
Figure 8 – Current Repository Object Model ... 22

 ii

Introduction

The purpose of this task was to design and develop a prototype capability that provides
repository services for a JBI. Repository services include storage and retrieval of Information
Objects1 as well as all data required for JBI operation, maintenance, and management. The
objective in building the prototype was to obtain an understanding of the requirements for a
robust JBI repository, and to examine in a laboratory setting, how those requirements could be
satisfied.

The approach was to leverage in-house research and development for repository design and core
service definition as points of departure for a far term design. Several repository software
packages were evaluated to aid in the definition of the design space for the JBI repository
prototype. These packages include:

• Berkeley DB XML
• Xindice
• eXist
• PostgreSQL
• JavaCC
• An XPath Parser Grammar
• Castor
• Repository In a Box (Rib)

The Berkeley DB XML2 package is a data store for XML documents. Xindice (pronounced
zeen-dee-chay) is also a XML data store supporting the XML:DB interface API3. PostgreSQL is
an open source relational database4. Java compiler-compiler (JavaCC) is the most popular parser
generator for use with Java applications5. A free XPath parser grammar for the JavaCC tool is
available and used for our research6. Castor is a library that allows a binding between Java
objects and XML documents7. The Repository In A Box (RIB) is a repository mostly used for
web-based sharing of software components and libraries8. More details about all of these
technologies and how they were used later.

The JBI in-house team developed and released a JBI Common Application Program Interface
(CAPI) in support of the Organically Assured and Survivable Information Systems9 (OASIS)

1 See the “Mercury Capability Guidelines,” 22 January 2003, chapter 3 “JBI Information Object Model – Mercury
Class” and chapter 6 “Persistence Management”
2 See http://www.sleepycat.com for more information.
3 See http://www.xmldb.org and http://xml.apache.org/xindice for more information.
4 See http://www.postgresql.org for more information.
5 See http://javacc.dev.java.net for more information.
6 See http://www.fatdog.com for more information.
7 See http://castor.exolab.org for more information
8 See http://www.nhse.org/RIB/index.html for more information.
9 See http://www.darpa.mil/ipto/programs/oasis_demval/index.htm for more information.

1

http://www.sleepycat.com/
http://www.xmldb.org/
http://xml.apache.org/xindice
http://www.postgresql.org/
http://javacc.dev.java.net/
http://www.fatdog.com/
http://castor.exolab.org/
http://www.nhse.org/RIB/index.html
http://www.darpa.mil/ipto/programs/oasis_demval/index.htm

Demonstration and Validation project, referred to as version 1.0 of the common API (JBI CAPI
v 1.0). JBI CAPI v 1.0 provides a publish, subscribe, query based infrastructure for application
interaction in the OASIS demonstration and validation testbed. CAPI v 1.0 is an ideal
foundation on which to build the JBI repository prototype, providing a complete platform that
allows rapid insertion of new repository techniques and software components with low to
moderate technical effort.

Repository Overview

The repository for the Joint Battlespace Infosphere (JBI) platform provides the working memory
for all JBI core services and is especially critical for the query core service. For the query
service to work at all, all information objects or suitably complete descriptions for all published
information objects must be available for interrogation. The repository therefore, must contain
those information objects (or their descriptions, see Figure 1 “JBI Repository Role”). Critical
attributes of any JBI repository implementation include scalability to thousands of information
object types, millions of information objects, and resistance to network and system performance
fluctuations. Additionally, the repository must support Information Object archival, access and
utilization auditing for security purposes, and sharing of information for performance
optimization purposes.

Figure 1 - JBI Repository Role

As shown in Figure 2, “Relationship of Application and Repository Interfaces”, the approach
was to make a generic, albeit robust interface to the repository available to the core service
implementation. This approach has a number of advantages; it is relatively immune to variations
in core service implementations, tolerant of changes to the Common API, and repository

2

technology neutral.

Figure 2 - Relationship of Application and Repository Interfaces

Archiving Information Objects should be a simple and efficient process. A substantial amount of
resources have been spent, and are currently dedicated to efficient storage and manipulation of
data10.. Any JBI repository prototype should leverage this huge commitment of resources and
existing infrastructure. Within the JBI, data persistence should be a platform service, not an
application responsibility. This ensures consistent, platform wide services for all applications
and allows the exploitation of the performance and quality of any number of third party
commercial products

The focus of the repository prototype effort is a flexible and robust interface that is portable and
allows for alternative repository implementations that provide creative and efficient Information
Object storage, retrieval and sharing. Current data stores offer different paradigms or strategies
to perform the storage management function. These include relational, object-oriented and XML
document structured solutions. A JBI repository design must not tie itself to any one data store
paradigm at this point in time. This approach allows for experimentation with a variety of data
store and storage management solutions. These solutions are implementable with a minimum
level of effort since MOST of the heavy lifting is abstracted away from application and platform
by these readily available storage management solutions. The repository implementation is the

10 The worldwide market for DBMS software is on the order of $13B per year “New fronts open in database war”
By Ed Scannell and Tom Sullivan, InfoWorld, October 20, 2000 1:01 pm PT Clearly, this figure does not include
the enormous resources devoted to the implementation, operation, and maintenance of the repositories built with
these products.

3

“glue” between these data store systems and the JBI proper.

The repository itself cannot live in a vacuum. It must be developed and tested in a real JBI
implementation. There have been two JBI implementations built in-house. The first was the Jini
Pub/Sub and the second is the OASIS 1.0 release. The Jini Pub/Sub implementation was
developed to better define the characteristics of publish and subscribe core services in a JBI
context. Principle areas of investigation where concepts of metadata invariance and the
characteristics of the broker function in a publish/subscribe service. In this implementation,
there was no repository per se – JMS persistence was utilized, but this function is oriented
towards insuring object delivery, not to support a comprehensive query service11.

The OASIS implementation builds on the understanding gained developing the Jini Pub/Sub
implementation. This implementation however was built using J2EE technologies and a full
blown repository interface based on Oracle 9i. Developed as part of this implementation were an
information object repository and associated information object schema repository (referred to as
the metadata repository by the development team and their extended development family). The
repository implementation is Oracle specific however, so additional research is oriented towards
a more generic repository interface12. The OASIS release is cutting edge and an excellent
foundation for our repository work. The current approach is to replace the OASIS repository
code and objects with code and objects that abstract details of the repository implementation
away from the common API. This approach enables the development and testing of new
repository solutions.

Information Object Repository Interface and Driver API

The end goal of a Repository application (client) interface, a robust and full functioned
exploitation of the JBI Repository, is a very large undertaking. However, to be able to
implement some capability that would be easily tested, a Repository interface was designed that
closely resembled the OASIS 1.0 Information Object Repository (IOR) facade interface. This
would allow software to be created that could easily plug into OASIS and enable the testing of
solutions other than the solution selected by the OASIS team for the Information Object
Repository.

The Information Object Repository Interface is very simple and allows both archiving and
querying capabilities to a user. This functionality is enabled by the following methods:

boolean archive(String type, String version, String metadata, Object object);
ResultSet query(String type, String version, String query);
ResultSet query(String queryID, int pageSize, String type, String version, String query);

11 “A Jini-Based Publish and Subscribe Capability” Vaughn T. Combs and Dr. Mark Linderman

12 “JBI OASIS Version 1.0 for the Organically Assured and Survivable Information Systems (OASIS)
Demonstration and Validation (Dem/Val), Distribution CD #1: Platform Services,” 31 Mar 2003, AFRL/IFSE, JBI
Program Office

4

To archive an Information Object, simply supply four pieces of information; the type of
Information Object, the version of the type of Information Object, the metadata describing the
Information Object and finally the actual Information Object.

There are two query methods available. The first is a simple query that supplies three pieces of
information. The type of Information Object to query, the version of the type of Information
Object and finally a query String to apply to the Information Objects contained in the Repository.
All the known Information Objects contained in the Repository are returned in a ResultSet
object. The second query method allows the user to “page” through the query ResultSet which
improves performance and memory requirements.

At this time, the query language used by OASIS is XPath. The query language implementation
is OASIS specific, hence the current implementation of a query language in the repository
prototype requires XPath. The JBI repository prototype design however, does not require the
specificity of the OASIS implementation, only that the query be representable as a String. The
String is simply passed to the lower level data store where processing the query can be abstracted
away from the application.

The atomic unit of information objects stored in the repository prototype is the base
java.lang.Object instance, which every Java object must extend. An Information Object
therefore, is not limited to any particular object definition. Persistence of information objects are
handled at the lower levels of the data store implementation. The only requirement for an
Information Object in the JBI repository prototype is that Information Object must implement
the java.io.Serializable interface. This ensures that lower level data stores will simply serialize
an Information Object instance so it can be persisted. OASIS is built upon Java 2 Enterprise
Edition (J2EE) technologies therefore all objects passed among J2EE entities over the network
MUST implement java.io.Serialization by definition, so the implementation is not constrained.
Declaring the argument as a java.io.Serilizable is not a strict limitation in the JBI repository
prototype interface since it is desirable for the interface to be valid in a non-J2EE environment.13

The Information Object Repository Interface also can supply some information about the
Repository to a JBI client, such as the number of stored Information Objects by type, and
enumerations of types, information object versions, and usage statistics. Clients can obtain basic
information about the state of the Repository, and hooks are provided for a direct information
management staff interface in support of the control core service. This functionality is enabled
by the following methods:

long getInfoObjectCount(); Returns the total number of information objects contained within the
repository.
long getInfoObjectCount(String type, String version); Returns the number of information objects
contained within the repository that have the specified type and version.
InfoObjectTypeVersion() getInfoObjectTypeVersions(); Returns an array containing all known
information object types and associated versions contained in the repository.

13 In an embedded spaces environment for example, such as t-spaces, java spaces, and Linda-Spaces

5

http://java.lang.Object/
http://java.io.Serializable/
http://java.io.Serialization/
http://java.io.Serilizable/

The Information Object Repository Interface is just that, an interface14. No code is really
implemented, the interface simply defines the methods that need to be provided by an
implementing class to fulfill the requirements of an Information Object Repository. The package
contains a class called Driver which implements some of the common functionality ALL
implementations of the interface must provide. Each implementation is expected to extend
Driver and implement the remaining functionality. The Driver class is an abstract Java class that
supplies some common basic plumbing methods and functions. The extensions need to supply
the method implementations of the Information Object Repository Interface since only the
extensions truly know what to do to interact with their specific data store. By designing the
infrastructure in this way, a plug in type of architecture is allowed. Many extensions to the
Driver class can be implemented, limited only by the imagination of the developer. If a data
store exists, a Driver could be written to use it. Imagine a Driver that could access any data store
supplying a JDBC interface. Or a Driver that itself is a data store by maintaining data in flat file
of the given operating system. These extensions can then perform their required functionality in
different ways. Different data store implementations could be provided and abstracted away
from our Information Object Repository Interface design. In a runtime setting, these different
implementations could be compared for performance and resource utilization rather easily using
the same hardware, plug in some implementation, then measure its performance using a common
criteria15.

There were two implementations done in this task. They used two different underlying data store
technologies which were the basic differences in the implementations. The data stores were the
Berkeley DB XML and the XML:DB implementation Xindice from the Apache open source
group. A third data store was evaluated called eXist, another XML:DB implementation but had
limitations and was unusable.

Berkeley DB XML

Sleepycat Software16, is the maker of Berkeley DB, which is one of the leading embedded data
management software in the world. They recently released version 1.0 of Berkeley DB XML, a
high-performance extremely reliable embedded database engine that stores and manages XML
data.

Berkeley DB XML is a library that links directly into the user's application, thus providing
superior performance by eliminating communications among processes or systems.

Documents are stored in collections. A collection is a set of XML documents. There is no other
requirement than to simply input N number of XML documents to the collection. The
documents can be totally disjoint, meaning they do not need to conform to the same schema.

14 Essentially, a class that provides operations without methods, utilized by external classes in order to exercise
some service such as JDBC.
15 There are well defined repository benchmarks and an excellent source of information can be found in “The
Benchmark Handbook”, http://www.benchmarkresources.com/handbook/introduction.asp. Unfortunately, these
benchmarks apply to well defined problems not directly applicable to the JBI Repository.
16 See http://www.sleepycat.com/ for more information.

6

http://www.sleepycat.com/

However, it would be more efficient and a better design of the XML database if the documents
were related or conformed to the same schema. The DB XML database is used efficiently by
having a collection for each type and version of the defined Information Objects. A single
application can operate on many collections at the same time. This is an important feature
because there is a need to maintain many collections since there will be many types and versions
of Information Objects.

Non-XML data may be included by creating standard Berkeley DB tables. Tables and
collections may be used together, with full support for transactions and recovery services by
multiple users simultaneously. There is a need to store the information object payload, and
payload can be stored in the standard tables provided by Berkeley DB, it not required that the
payload itself be an element of the XML document.

Berkeley DB XML's Query Processor implements XPath 1.017. A cost-based query optimizer
considers the indices that exist, the data volume that a query is likely to produce and the cost of
computation and disk I/O to select a query plan with the lowest run-time cost. As a product that
would be considered for a Repository instance, this careful design and implementation of this
algorithm by Sleepycat Software is something desirable to leverage.

Other key features:

• Supports Windows NT/2000/XP, Linux and Solaris.
• Includes complete source code.
• Manages XML documents quickly and reliably with a high-performance embedded data

manager.
• Stores and retrieves native XML documents. No conversion to relational or object-

oriented models required.
• Combines XML and non-XML data in a single database.
• Supports XPath 1.0 and other W3C standards for XML and XML Namespaces.
• Provides C++ and Java APIs.
• Supports multiple threads per process, and multiple processes per application using a

thread-safe library.

Berkeley DB and Berkeley DB XML packages are considered Open Source software and can be
acquired for free. An informal mailing list exists for simple support questions and feedback from
a community of users who have adopted the use of these packages. To use the Berkeley DB
XML as a data store, an extension to the Driver abstract class of the Information Object
Repository package was implemented. It was called the DBXML driver.

The DBXML driver that was developed allowed the use of Berkeley DB XML as a Repository
instance. The DBXML driver used the Berkeley DB XML data store to maintain the Information
Object metadata. The whole Information Object was serialized to a byte array and stored as
binary data in a Berkeley DB table.

17 See http://www.w3.org/TR/xpath for the complete specification.

7

http://www.w3.org/TR/xpath

Each instance of an Information Object type and version constituted a Berkeley DB XML
collection, and an associated Berkeley DB table was implemented to hold the actual instances of
Information Objects.

Persisting a new Information Object instance results in its metadata being placed into a
Collection determined by it's type name and version value. Upon successful insertion, the
Berkeley DB XML package assigns the metadata a unique ID. This ID value is used as the
primary key for the serialized Information Objects stored in the appropriate Berkeley DB table.
This allows for easy retrieval of the actual Information Object instances upon completion of a
successful query at some future time.

The Information Object instance being archived is placed into a DB XML Collection by type and
version. If given an Information Object instance has a type and version not currently known, a
new Collection is created on the fly to hold this new Information Object.

The Berkeley DB XML package supports XPath natively. It was a simple matter to pass the user
supplied XPath query string on invocation of the query methods to find the ResultSet of
Information Object instances that satisfy the XPath query. No conversion or parsing of the
XPath expression was needed to be done by the driver code to process the query.

Xindice

Xindice from the Apache project18 is a database designed from the ground up to store XML data,
and is an example of what is more commonly referred to as a native XML database. The benefit
of a native solution is that you don't have to worry about mapping your XML to some other data
structure, such as relational or object-oriented data stores. The data is inserted as XML and
retrieved as XML.

Xindice also uses XPath (http://www.w3c.org/TR/xpath) for it's query language and XML:DB
XUpdate (http://www.xmldb.org/xupdate/index.html) for its update language. An XML:DB API
implementation is provided for Java development. The XML:DB API is an open API designed
by the XML database industry. Since XML databases represent a new technology there has been
up to this point, no concerted effort to develop specifications targeted for the XML market. The
lack of specifications inevitably increases the learning curve for employees, prevents product
interoperability and ultimately slows the adoption of the products in the market place. To address
these issues, a decision was made to start the XML:DB initiative (http://www.xmldb.org). It is
hoped that through the efforts of XML:DB, that standards can be developed for the XML
database industry and that XML databases can make it into the standard tool set used by IT
departments worldwide.

An XMLDB driver was implemented so Xindice and other XML:DB data stores could be used
as Repositories. The XMLDB driver is instantiated with properties that allow it to interact with
any XML:DB type of data store including Xindice. This would mean that we could have every

18 See http://xml.apache.org/xindice/ for more information.

8

http://www.w3c.org/TR/xpath
http://www.xmldb.org/xupdate/index.html
http://xml.apache.org/xindice/

XML:DB data store be used as a Repository. It was found that because the XML:DB API
interface is immature, this generic XMLDB driver is not really possible at this time. The
XML:DB API interface needs more capability before this can truly happen. For example, there
is no standard way to add new Collections on the fly at run-time. The XMLDB driver needed to
access core Xindice API objects and methods to enable this capability since the XML:DB
definition did not allow for this capability. Surely this is an over site on the XML:DB
committees part since this is a basic and fundamental task. Because of this limitation, the
XMLDB driver at this time only worked with Xindice.

The XML:DB specification also allows for the mixture of both XML data and binary data. The
API defines this, but it was found not to be implemented very often by the XML:DB data stores
that were investigated. Xindice does not support the functionality of storing binary files. Since
the payload would generally be stored as a binary file, this functionality is required. The
XMLDB driver has code to support this functionality with payload stored on the local file
system. This solution is less than ideal, since the burden of maintaining these files falls upon the
XMLDB driver code, which was not developed by a third party and must be supported by us or
someone else. It would be much more desirable for this functionality to be supplied by the
XML:DB vendor so the improvements in their releases could be taken advantage of as available.
Until then, the driver must take this responsibility. In the future, it is expected that XML:DB
data stores will support this part of the API and the XMLDB driver will not be burdened with
this responsibility.

eXist

eXist 0.8.1 is a Java-based, open source native XML database that is suited for XML collections
that are occasionally updated. eXist has pluggable storage back ends, index-based XPath query
processing with extensions provided to support keyword search. Several interfaces come with
the database including HTTP, XML-RPC, SOAP and WebDAV. Two implementations of the
XML:DB API have been provided. The first talks to a remote database engine using XML-RPC
calls. The second has direct access to a locally running database instance. This option would
allow a developer to embed eXist into a stand-alone application without running an external
process.

eXist has been designed to be a pure native XML database, even though it provides an optional
relational storage backend. Database broker classes handle all calls to the storage back ends
(reference figure). These classes provide a limited set of basic operations. In addition, methods
are provided to access available index structures.

9

Figure 3 – eXist Architecture

Installation was straightforward. To install, Java 2 is required (can be found at
http://java.sun.som/j2se/1.4.2/download.html). eXist has been tested with several operating
systems including Solaris 8, Windows 2000, and Linux. It has also been tested with both Sun’s
and IBM’s JDK. It was installed on jbix1, a Compaq server running Windows 2000 Advanced
Server. eXist can be run in three different ways: as a stand-alone server process, within a servlet
engine or directly embedded into an application. In task 8 it was run as a stand-alone server
process. By making this choice, installation was as easy as unzipping the archive and setting two
environment variables: JAVA_HOME and EXIST_HOME. The JAVA_HOME environment
variable is set to the directory where either the Java Runtime Environment (JRE) is installed.
The EXIST_HOME is set to the directory where eXist is installed. To start the service, we
executed the startup.bat script located in %EXIST_HOME%\bin. After executing this command,
we verified the service was running using a web browser and the following URL:

http://localhost:8080/exist/index.xml

The following page was shown indicating success.

10

http://localhost:8080/exist/index.xml

Figure 4 – eXist Start Page

Once the database was installed, a call was put out for XML files. A limited number of files
were able to be secured that were stored on jbix1. Next, 3 collections were created in the
database. A collection, similar to a Windows’ folder, is simply a group of related XML files.
The collections were titled CMAPI, GIS and USMTF. Then the collections were populated with
the available data using the eXist command line client interface. XML files had to be generated
from message transaction format files for the complete US Message Transaction Format
(USMTF) collection19. There is a utility that follows the XML-MTF Mapping Public Working
Draft dated March 2000 developed by the XML Development Team. After populating the
collections, experimentation with the different user interfaces that were available were
performed.

Executing the client.bat script found in % EXIST_HOME%\bin\ starts the command line client
interface. This puts the user in a command window with a prompt. The functionality of this
interface is very limited as only a few commands are provided. In this mode, the user can add
and remove collections (mkcol, rmcol) and insert data – both a file at a time and a directory at a
time. After using the interface for a brief time, the limitations became quickly apparent. First,
the interface must be restarted to view the contents of a newly added collection. Second, the
interface doesn’t accept wildcards. Third, there is no move command. Whenever files are placed
in the wrong location, they have to be deleted then added again using the put command. A
fourth limitation is that the file names cannot have spaces in them since Windows interprets
spaces as delimiters.

19 See http://www-usmtf.itsi.disa.mil/ for additional information.

11

http://www-usmtf.itsi.disa.mil/

Going operational with this database would be relatively easy requiring just an Apache server
with Tomcat to be set up. The database is very easy to use, and can be up and running in literally
minutes.

At this point however, eXist cannot be recommended as a suitable operational capability. Even
though it is very easy to use, the functionality seems to be very limited. This database is well
suited as a working prototype but not much more.

Using OASIS 1.0

To test the software modules developed for this task, it was convenient to take advantage of the
development of the OASIS 1.0 release by the in-house JBI team. A significant amount of setup
effort can be avoided by using the bulk of the OASIS implementation and changing a small
number of classes and configuration files.

The OASIS 1.0 release used Oracle 9i for all database requirements. There are actually three
database requirements needed. They are:

• Storage of users, passwords, roles and permissions, the “Security Database”
• Persistence of Information Object instances, the “Information Object Repository” (IOR).
• Maintaining defined Information Object Types, their metadata schema and versions, the

“Schema Repository”. The schema repository is referred to in the “Mercury Capabilities
Specification” as the “Metadata Repository” or MDR. This title is not really an accurate
reflection of the MDR role in the JBI.

For development and testing purposes, PostgreSQL was adapted for the storage of user
information. For the persistence of Information Object instances, two data stores were used, the
previously described Berkeley DB XML and Xindice. The Information Object schema were
restored in PostgreSQL.

Using PostgreSQL instead of Oracle 9i for OASIS 1.0 user interactions.

Oracle 9i takes a lot of resources to be able to use, both in cost and hardware. Using a free and
open source database would make it simpler to get OASIS 1.0 running on the development
hardware available. One such available open source relational database is called PostgreSQL20.

The PostgreSQL Global Development Group is a community of companies and people co-
operating to drive the development of PostgreSQL, one of the worlds most advanced Open
Source database software.

The PostgreSQL software itself had its beginnings in 1986 inside the University of California at
Berkeley. In 16 years it has evolved from a research prototype to a significant player in the
global database management software market, leveraging a globally distributed development

20 See http://www.postgresql.org/ for more information.

12

http://www.postgresql.org/

model, with central servers based in Canada.

PostgreSQL was easily available for use. It was a matter of modifying some OASIS application
server configuration files and modifying several initialization SQL scripts that come with the
OASIS 1.0 distribution. Even though the 'S' in 'SQL' means 'standard', it was discovered that the
Oracle SQL syntax used was not fully supported by PostgreSQL syntax. This modification to
the SQL scripts was done as well as possible to allow the use of PostgreSQL instead of Oracle 9i
for the security/roles functionality of the OASIS application server.

One particular problem was not solved. The OASIS application server could not authorize users
using password encryption. It is believed that a Java platform bug exists having to do with the
encryption libraries for Linux.

As a work around, the OASIS application allowed for encryption of these passwords to be turned
off. This was done in our testing setup. An additional step had to manually perform to correctly
place the unencrypted password in the PostgreSQL database table used for user names and
passwords. After this, users were correctly validated.

Persisting Information Object instances via EJB Deployment

To test the implemented DBXML and XMLDB drivers and their underlying data stores in the
OASIS 1.0 release, three Enterprise Java Beans (EJB) needed to be created and deployed in the
OASIS application server. These beans replaced the OASIS 1.0 EJBs that use Oracle 9i
resources. The EJB framework makes it rather easy to deploy these replacement EJB objects so
the DBXML and XMLDB drivers to be tested and used.

Information Object Repository OASIS EJB

The OASIS 1.0 release does its repository work in a J2EE environment. The following diagram
details the OASIS 1.0 structure for the repository EJB deployment.

13

Figure 5 – OASIS High Level Architecture

The OASIS 1.0 release comes with an Information Object Repository (IOR) facade bean that
when used can store Information Objects and their metadata to the Oracle 9i database. It is
desired to replace this IOR facade bean with one of our own. This new bean is called
RepositoryIORFacadeBean. When this deployable EJB is created, it is configured to load a
particular driver that exercises the desired underlying data store. In this instance it has been
configured to either use the DBXML or XMLDB driver. Again, this is a build time
configuration. Meaning to change the actual driver, the RepositoryIORFacadeBean must be
rebuilt and redeployed. For practical purposes, this is fine to do for testing purposes. But no
Information Object instances are shared between the low-level data stores. For example, say that
the RepositoryIORFacadeBean is deployed configured with the DBXML driver. Over S seconds
of time, N Information Object instances are published and archived to the DBXML data store.
The RepositoryIORFacadeBean is then redeployed but now configured to use the XMLDB
driver. Those N number of Information Object instances would be “lost” and unknown to the
currently running RepositoryIORFacadeBean. Any newly archived Information Object instances
would now be stored in the XMLDB data store. Again, redeploying the
RepositoryIORFacadeBean back configured with the DBXML driver would result in the original
5000 Information Object instances now being contained or accessible by the
RepositoryIORFacadeBean that is currently running and any archived Information Object
instanced published while the XMLDB was being used would now be “lost”. A work around to
this problem could be achieved by writing a simple program that could migrate the Information
Object instances from one data store to another. The program would not need the J2EE
infrastructure. It could do its work by interacting with the Driver API only. The migration could
then be done offline or concurrently while the new data store is running.

Metadata Repository OASIS EJB

The OASIS 1.0 release comes with two MetaDataRepository (MDR) beans. One bean is a

14

facade bean that is used by client objects. The other bean is a helper bean only used by other
application server beans. In particular, the helper bean is used by the OASIS web application
that allows users to control the state of the MDR. Functions include examining, updating and
adding Information Object metadata definitions allowing for dynamic configuring and
publication of new Information Object types and versions.

The standard OASIS 1.0 MDR beans used Oracle 9i as its default data store. Again it was
desired to replace Oracle 9i as a requirement to executing OASIS 1.0. The MDR beans were
replaced with RepositoryMDRFacadeBean and RepositoryMDRBean.

Even though the MDR and IOR repositories are different entities and have different
functionalities, they both could be implemented by the same Information Object Repository
Interface and Driver definitions previously discussed. The main difference between the two
repositories is that the MDR is NOT required to support XPath as its query language. The basic
functionality of the MDR is to store the JBI common API implementation SchemaObject. The
SchemaObject is a simple container that has three properties. These properties are:

• The type of Information Object.
• The version of the type of Information Object.
• The actual metadata. The metadata is XML schema.

The querying requirements of the MDR, at least defined by the OASIS 1.0 release, is a rather
simple query of the known SchemaObject instances contained in the MDR.

From earlier development, an object existed that is capable of taking any Java object and storing
it in a JDBC style data store. This object is simply called Store. Given a particular Java object
class, Store can create a database table schema that can maintain a column entry for each
“property” of the given object. A “property” is defined in the Java object by that Java object
supplying “getter/setter” methods. For example, say a particular Java object has a property
called “Name” defined as a String type. The Java object MUST expose two public methods
thusly:

public String getName();
public void setName(String s);

Every property in the given object that has methods in this way will be persisted in the JDBC
database. The Store object using Java Reflection can determine a Java objects properties at run-
time and can generate the proper SQL to create a table schema, an SQL insert statement to insert
new object instances and execute the appropriate SQL select statements to query the database to
find appropriate objects that satisfy the query.

The RepositoryMDRFacadeBean and RepositoryMDRBean each use an instance of the Store
object to maintain a collection SchemaObject instances. These SchemaObject instances detail
the currently defined Information Object types and versions known to the running OASIS 1.0
instance. OASIS supplies a web application that allow the viewing of the SchemaObject
instances, their counts and their schema definitions. The web application also allows adding,

15

removing and modifying of SchemaObject instances. This web application is in fact interacting
with the RepositoryMDRBean instance running in OASIS.

These MDR beans have been configured to use two different JDBC databases. They are
PostgreSQL and another pure Java open source database called HyperSQL21. It is expected that
these beans would work with any JDBC style database, being a matter of a build time
configuration.

The following diagram details the changes made in the OASIS 1.0 release to use these new EJB
beans created.

Figure 6 – OASIS 1.0 EJB Overview

XPath Parser Grammar and JavaCC

The two data stores we used had a very important common trait. They both support XPath
querying of the metadata XML files maintained in their respective store. This is important
because in OASIS 1.0, the default query language is XPath. Since the both data stores support
XPath, this reduced our burden by eliminating the need to parse or process the input query. It
was only necessary to pass the input query string to the data store and to return the resulting
Information Object instances.

However, it would not be desirable to limit any data store that might be useful for our purposes.
There are several very good object databases on the market that could be very efficient
repositories for Information Object instances. Some commercial object databases would be
ObjectStore (http://www.objectstore.net) and FastObjects (http://www.fastobjects.com/us). An
open source object database called Ozone (http://www.ozone-db.org) might also be used. In most
likelihood, these object databases would not support XPath since XPath is an XML standard.

To support data stores that do not offer XPath query capability, a module or plugin that converts

21 See http://sourceforge.net/projects/hypersql/ for more information.

16

http://www.objectstore.net/
http://www.fastobjects.com/us
http://www.ozone-db.org/
http://sourceforge.net/projects/hypersql/

XPath into the query language the data store does support must be provided. An extra step, but
something that might well be worth doing. An open source project called XQEngine from
http://www.fatdog.com has developed an XPath parser grammar. The grammar is for JavaCC,
an excellent parser generator tool originally from Sun, now an open source project itself and
available at http://javacc.dev.java.net. Java compiler-compiler is the most popular parser
generator for use with Java applications. A parser generator is a tool that reads a grammar
specification and converts it to a Java program that can recognize matches to the grammar. In
addition to the parser generator itself, JavaCC provides other standard capabilities related to
parser generation such as tree building (via a tool called JJTree included with JavaCC), actions,
debugging, etc.

The beauty of having such a grammar already created is that the task of parsing XPath to some
other format is greatly reduced. By far the most difficult work to complete such a task is already
done. An API framework could easily be imagined that would allow easy conversion of XPath
to any form desired by the programmer. Using such an imagined framework, adding new data
stores that did not support XPath natively would become a rather painless process and allow the
use of efficient, future data stores.

Castor

A technology that was investigated in task 8 was an open source project called Castor. The
Castor project is located at http://castor.exolab.org. Castor is an open source data binding
framework for Java[tm]. It's basically the shortest path between Java objects, XML documents
and SQL tables. Castor provides Java to XML binding, Java to SQL persistence, and then some
more.

Castor was intriguing for its Java /XML binding. Since JBI Information Objects are described
using XML and specified by an XML schema definition, the Castor product could allow
seamless parsing of input XML metadata into Java objects. The Java objects could then be
accessed via their methods to examine metadata values. As developers, no special parsing code
would be required. Code to parse the XML would be generated by the Castor package. The
Castor package only needed the XML schema definition to generate Java code that could parse
given XML data conforming to the XML schema. These generated classes would be powerful
performing all code conversions based upon the XML schema. If the XML schema defined a
particular property as Boolean, then the property would be converted to a Boolean from a string
doing parsing. It is very convenient to the programmer not to have to do these data type
conversions on their own. This capability would also aid in debugging, given metadata that was
not correct or did not conform to the defined schema.

Since both data stores we used were XML and XPath aware, Castor did not come into play with
those solutions. However, if an object-oriented database was used, Castor would have been a
huge aid in the repository implementation. Since all items stored in an object-oriented database
are objects, the XML could be turned into objects via Castor then stored in the database. And
recreating the original XML would also be a simple task because of Castor. A missing piece
would be the querying capability. Something like the previous package mentioned created from

17

http://www.fatdog.com/
http://castor.exolab.org/

the XPath parser grammar would need to be created to take XPath to the native object-oriented
query language or method. These two packages would very much enable efficient use of object-
oriented databases in the future with very little development effort.

The RIB

During task 8, a project called Repository In a Box (RIB) was investigated22. The RIB is a
software package for creating web-enabled metadata repositories. Metadata is information that
describes reusable objects, such as software packages or datasets. RIB allows the user to enter
metadata into a user friendly java applet which then sends the information to a RIB server via
HTTP. The information is then stored in an SQL database where it is automatically made
available in a fully functional web site (catalog, search page, etc). Repositories which use similar
data models can use the XML processing capabilities of RIB to share information via the
Internet. Third party applications can access the data stored in RIB by using the RIB Application
Programmer's Interface (API).

The RIB was created by a development team located at the University of Tennessee under
direction by the National HPCC Software Exchange (NHSE). The RIB employs the Basic
Interoperability Data Model (BIDM), IEEE Standard 1420.1. The purpose of BIDM is to define
the minimal set of information about assets that reuse libraries should be able to exchange in
order to support interoperability. Since the BIDM describes a minimal set, other data that would
be useful for interoperability, such as library data model information, as well as communication
protocol and related standards, are not included.

An instance of the RIB was installed on a development machine. It was determined that the
querying capability of the RIB was not robust enough to use it as an actual Repository data store
for Information Object instances. Since the RIB does not support XPath natively, a very
inefficient scheme would have been required. Basically, the RIB query mechanism is something
along the lines of “give me the contents of the RIB and the result set is returned as a particular
XML document”. An XPath expression could have been applied against this document however,
as RIB contents expanded, it became very evident that query processing performance would
suffer greatly.

The RIB showed its true capabilities when it was used to maintain the documentation and
distribution of the source code developed for task 8. Using a RIB instance, it was possible to
easily show others the classes, objects, associated documentation and usage. It was shown that a
tool like the RIB would be a wonderful collaborative repository for software developed at RRS
and would make a great campus wide resource. So much code locally is developed “in a
vacuum”, that a RIB would allow for substantial code sharing and reuse, increasing overall
productivity for lab scientists and engineers.

The initial RIB data model detailed in the following diagram is an extension of IEEE 1420.1, the
Basic Interoperability Data Model (BIDM).

22 See http://www.nhse.org/RIB/index.html for more information.

18

Patrick McCabe
A pointer to our instance on jbix1\would be cool when available.

http://www.nhse.org/RIB/api/
http://www.nhse.org/RIB/api/
http://www.nhse.org/RIB/index.html

Figure 7 – Basic Interoperability Model

RIGObject is a base class that all other RIB classes inherit the “Name” attribute from. RIG
stands for Reuse library Interoperability Group, an organization that collaborated with IEEE
Software Engineering Standards committee to develop the Basic Interoperability Data Model23.
RIGObject is extensible in a JBI context to a JBI Repository Object, a base object from which all
content of the JBI repository inherit certain fundamental attributes (and perhaps methods as
well).

The primary or most important class in the RIB data model is the Asset class. An asset in the
RIB sense is a complete software package. The Asset class captures certain information about a
persisted software package, such as a functional description (captured in the “abstract” attribute).
Assets are constructed from elements, which can include source code, executables,
documentation, etc. The attributes within the Element class identify the type of the element (e.g.
source, executable, user’s manual etc.) and its storage media, which can be a compact disk, tape,
a pointer to a file, or expressed as a universal resource identifier.

The primary or most important class in the JBI Repository data model is the Information Object.
Currently, the Information Object is composed of type, metadata, and payload. A primary
objective of experimentation with the RIB was to more precisely define the nature and
composition of the Information Object.

Another objective of experimentation with the RIB was to capture the implicit use cases for the

19

RIB and to consider how extensions to those use cases would apply to the JBI Repository, if at
all.

Approach

Initial installation consisted of unzipping an archive file which created a directory structure with
subdirectories for Perl 5.6, MySQL 3.2.2 and Apache 1.3.6. Additionally, the administration
interface requires a browser plug-in written in Java 1.1..

Upon installation, the first step to using the RIB was to gain familiarity with the BIDM. The
element, asset, library, and organization tables are all interrelated and the RIB won't persist
records unless all required data in each table has been entered. Once familiar with the model and
with how constituent tables are related, the model and tables could be tailored to better meet
project requirements.

Once the data model was tailored, entries were put into the library and organization tables.
These tables are used to cluster data e.g. libraries cluster assets. After the library and
organization tables have been populated, asset instances need to be entered into the assets table.
Asset records contain the information that describes individual holdings. Assets cluster, or are
composed of elements which are instantiated as files. Out of the box, all RIB data must be
entered from the management interface one record at a time. Initially, assets should be entered,
but the RIB forces the user to assign at least one element to each asset before allowing additional
asset entries. The attributes of element were changed from required to optional, allowing all
assets to be added to the RIB at once. After the RIB was populated with assets, elements were
entered individually. The management interface was adequate for entering a limited number of
records, but it was very labor intensive when entering a significant number of records. The
evaluation project had 1500 records for inclusion into the RIB. A series of Perl scripts were
developed that automatically loaded elements into the RIB, associated them with assets, and
approved the elements for display. These scripts did not take advantage of the RIB API and a
more general solution exploiting the full power of the API would be highly desirable.

As more knowledge was gained about the RIB, it became apparent that not all of its functionality
was being utilized. Each asset and element has a keyword field that facilitates user searches.
Users of the various instances of the RIB are generally familiar with the BIDM model and the
content of various software catalogs. This familiarity provides a context for effective browsing,
query, and retrieval of software, data, and documentation. Implementation of a RIB for the
Rome Research Site requires the development and availability of a taxonomy (or context) that
characterizes the holdings of the RRS RIB in a way presents a similar degree of context for users
without requiring prior knowledge on their part. Coupled with the taxonomy, a naming
convention should be developed that allows users to determine on inspection if particular assets
are part of multiple assets.

Interoperability

One of the RIB’s strengths is interoperability. Two methods are provided: interoperability and

20

synchronization. Interoperability involves linking one RIB instance with another. When two
repositories are interoperating together, a user can access the assets of a remote RIB instance
from his own. The assets are linked via URL. On the repository prototype test computer, the
RIB instance was linked with 10 different repositories. RIB users on the test computer can now
access over 100 different assets.

The other form of interoperability is synchronization. Synchronization involves physical
replication of records contained in different RIB instances. A second RIB instance was created
on a second test machine and was synchronized with the RIB instance on on the primary test
machine. After the synchronization was complete, about 300 records were replicated between
both RIB instances.

The only information required to accomplish either form of interoperability is the repository
handle and the repository name24. With the required information, a user can interoperate with
any other RIB instance via the web.

Initial Dataset

The initial data set loaded into our instance of the RIB consisted of over 1500 message
transaction format (MTF) messages that were part of the Joint Warrior Interoperability
Demonstration (JWID) 2000 scenarios. They were converted into XML using a conversion
utility that was provided with the data. The conversion was accomplished using a Perl Script
that transformed the MTF formatted messages into XML and then loaded the records into the
RIB.

Making the RIB Operational

Initial steps have been taken to make the RIB operational in the AFRL/IF environment. When
the RIB is initially loaded, the application is started only when the appropriate user logs in.
When the user terminates his session, the RIB application is also terminated. Working with
researchers at the University of Tennessee, our instance of the RIB was successfully integrated
into a PKI enabled Apache web server as a cgi application. The next logical step is to get our
instance of the RIB working using mod_perl instead of as a cgi application.

Current Repository Design

Over the course of our experimentation and evaluation, the current design of the JBI repository
prototype has evolved as shown in the following figure

24 The handle is a URL assigned to a RIB instance. The repository name is the name assigned to a RIB instance.
For example www.software_catalog.rl.af.mil and “RRS Software Catalog”.

21

http://www.software_catalog.rl.af.mil/

Figure 8 – Current Repository Object Model

There are currently nine classes in the repository design; BaseInfoObject, Payload, Index, Driver,
InformationObject, AuditDatum, InfoObjectRepository, SchemaRepository, and Repository, of
which two reflect actual repository implementations (InfoObjectRepository and
SchemaRepository).

BaseInfoObject

The BaseInfoObject class is the fundamental building block of the object model. BaseInfoObject
can be viewed as the point of departure for table layout (in relational parlance) in the repository
proper. In the case of our design, the InformationObject class is a specialization of the
BaseInfoObject class, inheriting all BaseInfoObject class attributes and operations, adding
attributes for classification, releasibility, and access control markings as well as a container for
audit data. The goal is to support all auditing requirements for system high accreditation by

22

Defense Intelligence Agency.

Strictly speaking, the JBI, and by extension the repository, do not process or care about an
information object’s payload, just the associated metadata instances required to support the query
and publication/subscription core services. At a minimum therefore, the repository will have to
contain copies of the metadata instances for all published information objects and pointers to the
associated payload. In some cases, the payload will in fact reside in the JBI repository. More
generally however, payload will be resident in external repositories.

Payload

The Payload class attribute publisherPersisted is true if the payload is physically located in an
external repository, false if physically located within the JBI repository. The attribute
payloadHandleType can be “handle”25, “URI”, “URL”, “path”, etc. The attribute payloadHandle
is the string used to physically obtain external paylod. For example, if payloadHandleType =
“path”, payloadHandle could be “\\Lfs\projects\CYBERINFRA_SEMINAR\Anatomy of the
Grid.pdf”. Another example: if payloadHandleType = “URL”, then payloadHandle could be
http://www.rl.af.mil/programs/jbi/default.cfm. Or if payload is physically internal to the JBI
repository, publisherPersisted would be false, payloadHandleType would be null, payloadHandle
would be null, and the payload attribute would be non-empty.

Repository

There is an instance of the Repository class for every repository known to the JBI. An
information object repository and a schema repository are structurally identical, but functionally
distinct. Within an operational JBI, it is likely that the IOR will contain millions of information
object instances, whereas the SR will contain thousands. Additionally, IOR content will be
highly dynamic and its size will likely expand rapidly. SR content will be relatively static, it’s
size expanding relatively slowly.

The beauty of this approach is its syntactic and semantic simplicity. Relationships among
information objects are readily represented as an information object of a specified type.
Relationships among relationships, by extension are also readily represented as an information
object of specified type. Hence, InfoObjectRepository and SchemaRepository are specializations
of the Repository class.26

Index

The index class, while not implemented at this time, is also readily represented as an information

25 See www.handle.net for details on the handle concept
26 For an interestingly similar concept, see the Maya Report on the Universal Database by Peter Lucas and Jeff
Senn, Toward the Universal Database: U-forms and the VIA Repository, Doc. No. MTR–02001, MAYA
Design, Inc. The U-form concept is based on the e-forms concept first discussed by Michael Dertouzos (Former
director of the Laboratory for Computer Science, and professor of computer science and electrical engineering at
Massachusetts Institute of Technology) in his book What Will Be: How the New World of Information Will Change
Our Lives

23

http://www.rl.af.mil/programs/jbi/default.cfm
http://www.handle.net/

object of specified type. A repository instance may have zero or more indices, which can be
passed as an argument in a query or a subscription. The purpose of the Index class is to represent
some ordering of InformationObject contained within a Repository. Indices facilitate query,
reporting, subscription and decision support, but generally indices exact a performance penalty
during the update process27 (i.e. publish). Well designed, carefully implemented indices
minimize the overhead, poorly designed or implemented indices can ruin performance.

Client/Repository Interaction

It is important to stress at this point that only the InfoObjectRepository and SchemaRepository
classes are exposed to clients only via platform core services through the common application
program interface. Thus, clients interact with the JBI repository indirectly using the Browse,
Insert, Delete, Archive, Retrieve, Connect, Disconnect, and Suspend operations the
InfoObjectRepository and SchemaRepository classes inherit from the Repository class.

To quickly summarize functionality of the methods provided by the Repository class – Browse
allows a client to list, or examine without action, the content of a particular repository. Insert
allows new content to be added to a repository, while the appropriate indices are updated if
required. Delete allows content to be permanently removed from a repository. Archive persists
repository content to secondary or tertiary storage28. Retrieve copies content from the repository
to a requesting client via query or subscription core services. Connect simply allows a client to
hook up to a specific repository, again via the core services. Disconnect is the reverse of
connect, and suspend allows a repository connection to remain in place, but inactive29.

Conclusion

The JBI Repository Prototype work was able to accomplish the design and development of a
prototype capability that provides repository services for a JBI. These services included the
storage and retrieval of Information Objects and configuration information for the JBI itself. The
objective in building the prototype was to obtain understanding of the requirements for a robust
JBI repository, to examine alternative implementations in a laboratory setting, and this was
accomplished.

Many potential technologies were investigated and employed. These technologies included
Berkeley DB XML, Xindice from the Apache project, the open source XML:DB eXist, the open
source relational database PostgreSQL, the Java compiler-compiler tool JavaCC, an XPath
Parser Grammar usable by JavaCC, the XML-Java object binding project Castor and the RIB.
All of these technologies contributed to the understanding of the functional capabilities required
for the repository, insight into its design, and an understanding of the design space from which

27 Inserting new objects into the repository at some point requires an insertion to the index or even a complete
restructuring of the index.
28 The JBI repository can be thought of primarily as an in-memory database. Archive forcibly writes content to
disk. The mechanics for the appropriate criteria and thresholds are yet to be determined.
29 A suspended connection requires that some degree of platform resources continue to be assigned until the
connection becomes active again. In the event of a Disconnect, all platform resources are freed for other
connections.

24

an operational implementation may be selected.

A repository design was implemented that is flexible, extensible, and scalable. The object model
is straightforward and the mechanics of interaction with the repository are abstracted away from
the clients. An object oriented approach to the design was selected precisely for this reason – a
base design can be implemented and then extended without massive code redesign.

Future work will expand and extend the design shown in figure 8.

25

	Introduction
	Repository Overview
	Information Object Repository Interface and Driver API

	Berkeley DB XML
	Xindice
	eXist
	Using OASIS 1.0
	Persisting Information Object instances via EJB Deployment
	Information Object Repository OASIS EJB
	Metadata Repository OASIS EJB

	XPath Parser Grammar and JavaCC
	Castor
	The RIB
	Approach
	Interoperability
	Initial Dataset
	Making the RIB Operational

	Current Repository Design
	Conclusion

